Department: Mechanical Engineering Subject: Engineering Material Total Periods: 60 Class test: 20

Semester: 3rd No. of periods per week: 4 End semester exam: 80 Total Marks: 100

SI. No.	Week	Period	Topic to be covered
1.	1 st	1 st	Material classification
2.		2 nd	into ferrous and nonferrous category
3.	_	3 rd	Alloys
4.	-	4 th	Types of alloys
5.	2 nd	- 1 st	
			Properties of metal
6.	-	2 nd	Physical , Chemical and Mechanical
7.	1	3 rd	Performance requirements
8.	1	4 th	Material reliability and safety
9.	3 rd	1 st	Characteristics of ferrous materials
10.	-	2 nd	application of ferrous materials
11.	-	3 rd	Classification of low carbon steel
12.	-	4 th	composition of low carbon steel
13.	4 th	- 1 st	application of low carbon steel
14.		2 nd	Classification of Medium carbon steel
15.	-	3 rd	composition of Medium carbon steel
16.	-	4 th	application of Medium carbon steel
17.	5 th	1 st	Classification of High carbon
18.	-	2 nd	composition of High carbon steel
19.	1	3 rd	application of High carbon steel
20.	1	4 th	Alloy steel
21.	6 th	1 st	Low alloy steel

22.		2 nd	high alloy steel
22.	-	3rd	tool steel
23. 24.	-	3 ^{ru} 4 th	
	- +h		stainless steel
25.	7 th	1 st	Tool steel
26.	-	2 nd	Effect of various alloying elements such as Cr, Mn, Ni, V, Mo
20.	-	3 rd	cooling curves
27.	-	4 th	<u> </u>
28. 29.	8 th	4 1 st	Concept of phase diagram
29.	0		Crystal defines
30.		2 nd	Features of Iron-Carbon diagram
31.		3 rd	with salient micro-constituents of Iron and Steel
32.		4 th	classification of crystals
33.	9 th	1 st	crystal imperfections
34.	-	2 nd	Classification of imperfection
35.		3 rd	Point defects
36.	-	4 th	line defects
37.	10 th	1 st	volume defects
38.	-	2 nd	surface defects
39.	-	3 rd	Types and causes of point defects
40.		4 th	Vacancies
41.	11 th	1 st	Interstitials and impurities
42.	-	2 nd	Types and causes of line defects
43.	-	2 3 rd	Edge dislocation
44.	+	4 th	and
	d Oth	1 st	screw dislocation
45.	12 th		Effect of imperfection on material properties
46.	-	2 nd	Deformation by slip and twinning
47.	-	2 3 rd	Deformation by slip and twinning
48.	+	4 th	Effect of deformation on material properties
48. 49.	13 th	1 st	Purpose of Heat treatment

50. 51. 52.	_	2 nd 3 rd 4 th	Process of heat treatment: Annealing, normalizing, hardening, tampering , stress relieving measures Surface hardening: Carburizing and Nitriding
53.	14 th	1 st	and Effect of heat treatment on properties of steel
54.	1	2 nd	Hardenability of steel
55.		3 rd	Aluminum alloys: Composition, property and usage of Duralmin, y-alloy.
56.	1	4 th	Copper alloys: Composition, property and usage of Copper-
50.		-	copper anoys: composition, property and usage of copper
56. 57.	15 th	1 st	Aluminum, Copper-Tin, Babbit , Phosperous bronze, brass, Copper- Nickel
	15 th		Aluminum, Copper-Tin, Babbit, Phosperous bronze, brass, Copper-
57.	15 th	1 st	Aluminum, Copper-Tin, Babbit , Phosperous bronze, brass, Copper- Nickel